
AD-A262 553 "

AFIT/GOR/ENS/93M-21

A MODIFIED CHI-SQUARED GOODNESS-OF-FIT

TEST FOR THE THREE-PARAMETER GAMMA

DISTRIBUTION WITH UNKNOWN PARAMETERS C

THESIS ELECTE
Thomas John Sterle S AR5 1993

AFIT/GOR/ENS/93M-21

Reproduced From
Best Available Copy 93-06855

Approved for public release; distribution unlimited

9t "1 02 2)14
S%.9 Rit



I ___________r_

AFIT/GOR/ENS/93M-21

A MODIFIED CHI-SQUARED GOODNESS-OF-FIT TEST

FOR THE THREE-PARAMETER GAMMA DISTRIBUTION

WITH UNKNOWN PARAMETERS

THESIS

Presented to the Faculty of the School of Engineering

of the Air ilorce Institute of Technology

Air University

In Partial Fulfillment of the Accesion For

Requirements for the Degree of NTIS CRA&IDTIC TAB
Master of Science in Operations Research Unannounced L.

Justificition

By..Distribut..ion/..........................

Thomas John Sterle, B.S. Availability Codes
I Avail and/or

Dit• Special

March, 1993

Approved for public release; distribution unlimited



THESIS APPROVAL

STUDENT: Thomas J. Sterle CLASS: GOR-93M

THESIS TITLE: A Modificd Chi-Squared Goodness-of-Fit Test for the Three-Parameter

Gamma Distribution with Unknown Parameters

DEFENSE DATE: March 8, 1993

COMMITTEE: NAME/DEPARTMENT SIGNATURE

Advisor Dr. Albert H. Moore/ENC /-

Reader Dr. Joseph P. Cain/ENS



Acknowledgements

I would like to express my appreciation to my advisor, Dr. Albert Moore, for his

Y elp and guidance in the preparation of this thesis. My thanks also go out to Dr. Joseph

Cain and to my classmates, particularly Lt. Erol Yucel, for their assistance.

I am especially grateful to my wife, Debbie, for her constant love, support, and

understanding during these difficult past 18 months.

A' Thomas John Sterle



Table of Contents

Page

Acknowledgements. .. .. .. .. .. .... .. .... .... .. .... .... .. ... . ......

List of Figures .. .. .. .. .. .... .... .. .... .... .. .... .... .. .... ..... v

List of Tables .. .. .. .. .. .. .... .... .. .... .... .. .... .... .. ........ vi

Abstract. .. .. .. .. .. .. .... ...... .. .. .. .. .. .... .... .. .... ...... vii

I. Introduction. .. .. .. .. .. .. .... .... .. .... .... .. .... .... ..... 1

1.1 Background. .. .. .. .. .. .. .... .... .... .. .... ........ 1

1.2 Objective .. .. .. ..... .. .. .. .. .. .... .... .. .... ..... 3

1.3 Sub-objectives. .. .. .. .. .... .. .... .... .... .. ........ 3

11. Literature Review. .. .. .. .. .... .... .. .... .... .. .... .... ..... 4

2.1 Goodness-of-Fit Tests .. .. .. .. .. .... .. .... .... ........ 4

2.2 Parameter Estimation .. .. .. .. .. .. .... .... .... .. ..... 8

2.3 The Gamma Distribution. .. .. .. .. .. .... .... .. ........ 10

2.4 Related Work. .. .. .. .. .. .. .... .... .. .... .... ...... 11

III. Methodology. .. .. .. .. .... .. .... .... .. .... .... .. .... ...... 15

3.1 Generation of Random Number Sets. .. .. .. .. .. .... ...... 15

3.2 Parameter Estimation. .. .. .. .. .. .... .... .. .... ...... 15

3.3 Calculation of the Chi-Squared Goodness-of-Fit Statistic . . . .17

3.4 Identification of Critical Values. .. .. .. .. .. .... .... ...... 17

3.5 Power Study .. .. .. .. .. .... .... .. .... .... .... ...... 17

IV. Results .. .. .. .. .. .. .. .... .... .... .. .... .... .. .... ........ 21

4.1 Critical Values .. .. .. .. .. .... .... .. .... .... .. ...... 21

4.2 Power Study .. .. .. .. .. .... .... .. .... .... .... ...... 24



Page

V. Conclusions and Recommendations. .. .. .. .... .... .. .... .... .... 29

5.1 Conclusions .. .. .. .. .. .. .... .... .. .... .... .. ...... 29

5.2 Recommendations .. .. .. .. .. .... .... .. .... .... ...... 29

Bibliography .. .. .. .. .. .... .... .. .... .... .. .... .... .. .... ...... 30

Appendix A. FORTRAN Code to Generate Chi-Squared Statistics. .. .. .... 31

Appendix B. FORTRAN Code to Generate Critical Values .. .. .. .. .. .... 45

Appendix C. FORTRAN Code to Generate Rejection Percentages. .. .. ..... 46

Vita .. .. .. .. .. .... .. .... .... .. .... .... .. .... .... .. .... ...... 50

iv



List of Figures
Figure Page

1. Standard Gamma Distribution with Integer Shape Values. .. .. .. .. .... 12

2. Standard Gamma Distribution wAith Nan-Integer Shape Values .. .. .. .... 13

3. Effect of Scale Parameter on Gamma Distribution. .. .. .. .. .... ...... 14

4. Generation of Critical Values .. .. .. .. .. .... .. .... .... .. ........ 19

5. Power Study. .. .. .. .. .... .. .... .... .. .... .... .... .. ...... 20

v



List of Tobies

Table Page

1. Critical Values for Shape=1.0 ................................ 22

2. Critical Values for Shape=1.5 ................................ 22

3. Critical Values for Shape=2.0 ................................ 23

4. Critical Values for Shape=2.5 ................................ 23

5. Comparison of Critical Values to X2 Distribution ................... 25

6. Power Study for Ho Gamma, a = .05, Using Critical Values For Shape=1.5 26

7. Power Study for H: Gamma, a = .01, Using Critical Values For Shape=L.5 27

8. Power Study for Ho Gamma, a = .05, Using Critical Values For Shape=2.5 27

9. Power Study for H0 Gamma, a = .01, Using Critical Vaiues For Shape=2.5 28

vi

/_ . . oo



AFIT/GOR/ENS/93M-21

Abstrac'

A modified chi-squared goodness-of-fit test was created for the gamma distribution in

the case where all three parameters are unknown - nd must be estimated from the sample.

Critical values for this test are generated using a Monte Carlo simulation procedure with

5000 repetitions for each case. Random samples of size 5, 10, 15, 20, 25, 30, 40, and 50 are

drawn from gamma distributions with shape parameters 1.0, 1.5, 2.0, and 2.5, with the lo-

cation and scale parameters set to 10 and 1, respectively, in all cases. The three parameters

are then estimated from each sample, using an iterative technique combining the methods

of maximum likelihood and minimum distance, enabling computation of the chi-squared

statistics and critical vraues. The same Monte Carlo process is used to generate random

samples, parameter estimatea, and chi-squared statistics from ten alternate distributions

as a check on the power of the chi-squared goodness-of-fit test. The goodness-of-fit tests

are executed by comparing the chi-squared statistics from alternate distributions with the

gamma critical values, allowing calculation of the power of the test against each alternate

distribution.

vii



A MODIFIED CHI-SQUARED GOODNESS-OF-FIT TEST

FOR THE THREE-PARAMETER GAMMA DISTRIBUTION

WITH UNKNOWN PARAMETERS

L Introduction

1.1 Background

Two of the most important factors influencing the cost-effectiveness of a weapon

system are its reliability and maintainability (R&M). Together these factors determine the

availability of the system to perform its mission at any given point in time. The fastest,

most lethal weapon ever built will add little value to a combat force if it fails early and

often, or takes excessive time and resourcms to repair. When evaluating alternative design

proposals, therefore, engineers and program managers must incorporate R&M considera-

tions as key factors to be weighed and traded-off with performance, cost, schedule, ani

other parameters.

A critical measuring stick of reliability is the mean tme to failure (MTTF), which

as the name suggests indicates the expected duration of a component's or system's opera-

tion before corrective maintenance becomes necessary. The MTTF can be determined by

indirect testing, simulating operational use by subjecting the item in a matter of hours

to the stresses and strains that it would typically encounter in weeks or months, thereby

accelerating the aging process. After obtaining a few data points on time-to-failure in

this way, the engineer would like to be able to make predictions on the MTTF and the

probabilities associated with a iange of possible failure times surrounding this mean.

Fortunately, the MTTF ol most items can be adequately modeled by one of the

classical probabi)ity distributions of continuous random variables, such as the gamma dis-

tribution. The engineer can thus examine the test data and determine which of these

distributions best represents the true MTTF behavior of the item under investigation.



The statistical tool for deciding whether a given set of data (sample) could reascnably

have come from a given probability distribution is called a goodness-of-fit test. As the name

implies, this test indicates whether there is a good fit between the data in the sample and

sowe hypnthesired distribution. If the test shows a fit that is less than good, the engineer

can then proceed to a different distribution and continue testing in this manner until an

appropriate one is found. He may change the hypothebis to an entirely different family

of distributons (the Weibull or normal rather than the gamma, fcr instance), or simply

change one or more of the constants, called parameters, which uniquely determine the

mathematical form of the distribution.

The purpr-; of every goodness-of-fit test is to determine how close is the match

between an observed sample and some (hypothesized) probability distribution, with which

it is desired to model the behavior of the phenomenon represented by the sample. This is

accomplished by computing a statistic which quantifies the differences between the sample

and the hypothesized theoretical distribution. If this statictic is relatively small in value,

then so are the differences, and the hypothesis is accepted. Convcersely, large values of the

goodness-of-fit statistic call for rejection of the hypothesis. The watershed level to which

the statistic is compared to determine acceptauice or rejection i3 called the critical value.

Several goodness-of-fit tests are available, differing main!y in power the probability

that a poor fit will in fact be detected, and the type of sample data and hypothesized

distributionG to which they can be applied. In general, a test with high power will not be

applicable to a wide variety of sample and distribution types, and vice-versa. An example

of the latter situation is the chi-squared goodness-of-fit test, versatile in its application but

somewhat lacking in power.

Over the years, the various types of goodness-of-fit tests have been tailored for use

with specific families of hypothesized probability distributions. The chi-square test has not

been tailored for use with the gamma distribution, however, in the case where all three

parameters must be estimated from the sample.
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1.2 Objective

The proposed research will generate a chi-squared goodness-of-fit test for the gamma

distribution, in which all three parameters are estimated from the sample. The shape

and scale parameters will be estimated by the method of maximum likelihood, Vhiie the

location parameter is estimated by the minimum distance method.

1.3 Sub-!)bjcctives

1) Generate sets of random numbers from the gamma distribution.

2) Calculate the the maximum likelihood (ML) estimates for the location, scale, and

shape parameters.

3) Calculate the minimum distance (MD) estimate of the location parameter.

4) Re-calculate the ML estimates for the shape and scale parameters.

5) Compute the chi-squared goodness-of-fit statistics.

6) Order these statistics in an array and find th,ý critical values..

7) Generate sets of random numbers from distributions other than the gamma.

8) Repeat steps 2-5 for these random number sets.

9) Determine the power of the test by computing the percentage of rejections of the

null hypothesis, that is, the fraction of the number sets in which the chi-squared statistic

exceeds the critical values determined in step 6.

3



I1. Literature Review

2.1 Goodness-of-Fit Tests

The general procedure for a goodness-of-fit test is as follows. First, a hypothesis is

made to identify a theoretical distribution, as suggested by a rough examination of the data

in the sample. If the parameters of this distribution are unknown, as is usually the case,

then they must be estimated from the data. Following this, the cumulative distribution

function (CDF) can be completely written for the hypothesized distribution, using the

estimated parameters. The goodness-of-fit statistic is then calculated, using some type of

formula to compare the "behavior" of the sample data to what one would expect to see

if it were actually from the distribution in question, using the CDF. The value obtained

is compared to the tabled critical value to determine whether tn accept or reject the null

hypothesis that the sample is from the specified distribution. This procedure is essent;ally

the same for all goodness-of-fit tests. The main difference among tests lies in the method

of calculation of the goodness-of-fit statistic. (1:2-4)

The chi-squared test, developed by Karl Pearson in 1900, is still among the most

widely-used goodness-of-fit tests because of its broad applicability. The test can be used

with grouped or ungrouped data, discrete, continuous, or mixed distributions, and w;th the

parameters estimated or known beforehand. It can also be modified for use with censored

data or truncated distributions. The test is an approximate test since the sample statistic

is not truly distributed as a chi-square random variable, only in the upper and lower tails

of the distribution. (15:113)

Three drawbacks of the chi-squared test should be mentioned. First is its relatively

low power. Further, its results are not necessarily unique for a given set of data, because

the data must be arranged in groups before the test can be carried out. Since the selection

of groups Is somewhat arbitrary with no'standard procedure, the results may differ from

one analyst to the next. Finally, if using percentage points of the chi-squared distribution

as the critical values for the test, one should have samples of at least 25 data points.

(15:113-14)
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The chi-squared test procedure is as follows. First, the data are divided into k groups.

The number of data points that are expected to fall in each group is then calculated and

denoted Ej, i = 1, 2,.. - k. The actual or observed number in each group is tallied and

called O1. The formula for the test statistic is

with the null and alternative hypotheses represented as

Ho: F(x) = Fo(x)

HA: F(T) 74Fo(.T)

Normally, we reject HO if fC2 > X 2 (k - p- 1), where X2(k -p - 1) refers to the critical

value of the chi-square distribution with k - p - 1 degrees of freedom, p being the number

of parameters estimated in the specification of the null hypothesis FO(x). For this to be

strictly correct, however, the parameters must have been estimated by the minimum chi-

square method. If other methods are used, then the number of degrees of freedom of the

chi-squared critical value cannot be stated with certainty, except to say it lies somewhere

between k - 1 and k - p - 1. With k large and p small (as is often the case) the value of

the chi-squared critical value will not change much in this range, so the uncertalnty is of

little concern. (10:68)

Estimating the parameters of the hypothesized distribution from the sample inher-

ently biases the test toward acceptance of the fit as good, since it obviously increases the

agreement between the sample and the distribution. It is for this reason that the number

of degrees of freedom of the chi-squared critical value must be reduced in this case, as fewer

degrees of freedom reduces the critical value and thus makes it more difficult to "pass" the

test. (7:242)



The art of grouping data for the chi-squared test has been a subject of much study

and debate among statisticians in this century. One of the first guidelines offered was that

the expected cell frequencies E, should in general be at least five, that is, there should be at

least five data points in each group. This rule, proposcd by Fisher in 1925, enabled use of

the chi-squared critical values as a reasonable approximation for small sample sizes (12:23).

In 1942 Mann and Wald elaborated on Fisher's rule. They argued for equiprobable cells,

meaning that the data are grouped such that the probability (under the null hypothesis)

of a data point falling in any cell is the same for that of any other cell, or that all of

the E, are equal. They proved that such an assignment was unbiased and resulted in a

closer approximation to the chi-squared statistic by the chi-squared distribution (10:69).

To specify the actual number of (equiprobable) cells, Mann and Wald derived the following

formula:

M =4 (2n- /

where M is the number of cells and c(a) is the 100A% point of the standard normal

distribution, a being the significance level of the test. Rayner and Best found that varying

the number of ceils for certain fixed-level tests resulted in a rise in power until reaching a

maximum (often for k values of 4 or 5), which is followed by a decrease for higher k values

15:24). D.S. Moore later observed that decreasing the number of cells, even to the point

of halving the Mann and Wald number, does not appreciably affect the power. Moore

recommended the much simpler formula (10:70)

M = 2n2/5

Lancaster(1980) and Kallenberg(1985) have recently challenged the use of equiprob.

able cells, asserting that higher power is obtained when cell boundaries are drawn only

at points of steep slope of the alternative probability density function. The fact that the

alternative usually cannot be specified exactly limits the usefulness of this finding. (12:25)
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Despite the diversity of opinion, there is general agreement on the following rules,

first suggested by Roscoe and Byars in 1971:

1. With equiprobable cells, the expected cell frequency should be at least one for a = .05

and at least two for a = .01.

2. If the cells are not equiprobable, the above cell counts should be doubled.

3. If there are only two cells, the test based on the exact binomial distribution should

be used in lieu of the chi-squared test. (12:23-4)

In more recent times two new goodness-of-fit statistics have been developed based

on the chi-squared distribition, the Watson-Roy and Rao-Robson statistics. Although

more powerful than the classic Pearson statistic used in this thesis, these new chi-squared

statistics are also more limited in their application. (10:91)

Even more powerful than these new chi-squared statisticni are the other major class of

goodness-of-fit statistics, known as EDF statistics due to their basis in the empirical distri-

bution function (EDF) of the sample. The EDF for n ordered data points X(l), x( 2 ), .. (n)

is defined as:

0, < X(l)

EDF(x) = •, x(Z) _ x < z(i+l), = 1,...,(n - 1)

1, X ! X(n)

All EDF statistics involve some type of measurement of the "distance" between the

sample's distribution function, the EDF, and the theoretical cumulative distribution func-

tion of the hypothesized distribution. The three most popular EDF statistics, in order

of increasing complexity, are the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-

Darling statistics. These statistics cannot be used in the case of three-parameter distribu-

tions where all parameters are to be estimated. (13:4-6)

The relative lack of power of the chi-squared test owes much to the need for grouping

of data, since this grouping automatically masks some of the information resident in the

7
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sample. Nevertheless, there remain many uses for the test, owing to its flexibility and

better handling of the cases where parameters must be estimated. The test is especially

useful in the early stages of screening and assessing data, often as a precursor to more

powerful and specific tests. (10:91-2)

2.2 Parameter Estimation

In most cases where a goodness-of-fit test is to be employed, we are not in a posi-

tion to know the parameters of the hypothesized distribution, only the family. Since the

distribution must be fully specified in order to conduct the test, there is no choice but to

estimate the parameters from the sample. As with goodness-of-fit tests, there are several

methods of accomplishing parameter estimation. By far the most useful is the method of

maximum likelihood, but the minin.um distance method will also be used in this effort.

The method of maximum likelihood, pioneered by R.A. Fisher in the 1920's, is the

most widely-used technique for estimating the parameters of a probability distribution and

generally produces the best estimators. The estimates produced by this method are those

which maximize the likelihood of the observed sample having come from the distribution

defined by the estimated parameters. The likelihood function, which is the joint density

function in the case of continuous random variables, is first written for the hypothesized

distribution. The natural logarithm of both sides of the equation is then customarily taken,

to aid in computing the derivatives in the next step. The partial derivative of the likelihood

function is then taken with respect to each parameter being estimated, and this expression

is set equal to zero. The resulting equations are then solved simultaneously to yield the

maximum U.'-elihood estimates. (8:255)

The minimum distance method, introduced by Wolfowitz in 1957, works by mathe-

matically minimizing the distance between the hypothesized CDF and the sample EDF.

An EDF goodness-of-fit statistic (often one of the three discussed in the previous sec-

tion) expresses the distance between the CDF and the EDF, and the parameter estimates

defining the CDF are modified until this distance is minimized. (14:75)

8



As demonstrated by Wolfowitz, the minimum distance method often provides more

conaistent estimators than the method of maximum likelihood. Consistent estimators are

those wh:3ch converge to the true parameter value with probability one as sample size

increases wit'iout bound. Another desirable property of estimators is robustness, which

signifies a versatility enabling their use with a wide range of underlying models. The price

paid for this versatility is often somewhat diminished performance (in terms of the other

desirable estimator properties) for any one model. Woodward and others showed minimum

distance estimators to be more robust than maximum likelihood estimators in a study of

the mixture of two normal components. (1:2-3)

Parr and Schucany undertook perhaps the most compiehensive evaluation of the

minimam distance technique in 1980. They concluded that the method generated "strongly

consistent estimators with excellent robustness properties" when applied to the location

parameter of symmetric distributions, and found these estimators to be both invariant and

relatively simple to calculate. (12:5)

Harter and Moore in 1965 applied the method of maximum likelihood to the gamma

and Weibull distributions, for the first time allowing all three parameters to be simul-

taneously estimated by use of an iterative, computer-driven technique. Their approach

can be used with complete or censored (partial) data, and with two, one, or none of the

parameters previously known. (4:639)

In 1984 Hobbs, Moore, and James introduced a parameter estimation technique for

the gamma and Weibull distributions which improved on the Harter and Moore effort. All

three parameters are initially estimated by maximum likelihood. The location parameter

is then re-calculated using the minimum distance method. Finally, this improved location

estimate is re-inserted into the maximum likelihood equations, and the scale and shape

parameters re-estimated. The final parameter estimates are better than those obtained

using maximum likelihood alone. (5:237)

9



L.S The Gamma Distribution

Several interesting random phenomena can be adequately modeled using the gamma-

type probability distribution. The central f-atures of this distribution are that it takes on

only positive values and is skewed to the right, meaning that smaller values are the most

likely to occur, with the probability of seeing larger values decreasing in a slow and smooth

fashion as the values increase. (8:164)

Many applications of the gamma distribution are found in R&M theory, as previously

noted. It has been discovered, for instance, that the length of time to perform a mainte-

nance check on an aircraft engine is a gamma random variable, as is the length of time

between failures of that engine (8:164). The physical sciences use the gamma distribution

as well, in such areas as modeling the mean value of radioactive particles in shale (13:11).

Finally, queuing theory depends heavily on a special case of the gamma distribution, the

exponential distribution, to represent the arrival and service times of customers or other

entities at any of a number of service operations.

The form of the gamma probability density function (pdfl) is as follows:

AX) kr1(k)

k,i9>O0; < X<o00; 05C < X

where x is the gamma random variable, k is the shape parameter, 6 is the scale

parameter and c is the location parameter. The expression 17(k) denotes the gamma

function, defined as

17(k) = Jzke-#dx

0

This is the three-parameter representation; frequently the gamma density function is

expressed without the location parameter. This common representation, with the location

.10



parameter set to zero, is known as the two-parameter gamma distribution. When 0 = .1

and c=O, we have what is called the standard gamma distribution.

Figures 1 and 2 show the effect of varying the shape parameter on the graph of the

gamma pdf. The graph with shape parameter k = 1 can be recognized as the familiar

exponential distribution. Figure 3 conveys the role of the scale parameter by showing

graphs with constant shape and location parameter and various values of 8.

2.4 Related Work

Viviano developed a goodness-of-fit test for the three-parameter gamma distr-';u-

tion in 1982, using the Anderson-Darling, Cramer-von Mises, and Kolmogorov-Smirirov

statistics. The shape parameter was assumed known in this effort, while the scale ar.d

location parameters were estimated by maximum likelihood (13:xi). In 1991 Crown used

the Hobbs/Moore/James parameter estimation technique to create an Anderson-Darling

goodness-of-fit test for the Weibull distribution. He assumed the shape parameter known

and estimated the location (minimum distance) and scale (maximum likelihood) parame-

ters (1:viii).

11
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III. Methodology

3.1 Generation of Random Number Sets

For each set of critical values desired, 5000 sets of gamma random numbers had

to be generated to simulate actual sample data that might be obtained, say, through

reliability testing. The large number of repetitions is necessary to obtain a reasonably

accurate indication of the true behavior of the system and achieve a high level of statistical

confidence in the results; this is known as the Monte Carlo simulation procedure. The larger

the number of repetitions, the better the results would represent the true behavior of the

gamma population, but limitations in time and computer resources mandated the choice

of 5000.

The gamma random numbers (called gamma deviates) are drawn using a computer-

ized random number generator, in this case the Fortran IMSL subroutine called RNGAM.

This subroutine will produce pseudo-random number sets from the standard gamma dis-

tribution (bcale-=- and location=0). The user need only supply the shape parameter and

sample size desired. Since for the purposes of this investigation we want to study the

three-parameter gamma distribution, the 2-parameter, standard deviates are transformed

ucing the following equation:

Z = Ox 4- c

Where x is the standard gamma deviate, 0 and c are the scale and location parameters

desired, and Z is the 3-parameter, non-standard deviate. For this investigation we set the

location parameter to 10 and the scale parameter to 1 for all gamma random number

draws.

3.2 Parameter Estimation

The method of Hobbs, Moore, and James was used to iteratively compute estimates

of the shape, scale, and location parameters for each random sample. The method first

iteratively solves the three maximum likelihood (ML) equations simultaneously. These

15



equations are formed by taking the partial derivatives of the gamma likelihood function

L = ( ,(xioc n e,_i'~

with respect to each of the three parameters in turn and setting each equal to zero:

61nL -nk n c
= + = 0

6lnL b(Zk) I"T "= - nlnO + E-'In(xi -_ c) -n-6~• r--~ 0
-nln + = bk 17(k)

6InL =n= (1- k) (x, - C) + 0
i=1 8

After the algorithm converges to the ML estimators for the three parameters, the

minimum distance (MD) method is used to further refine these estimates. First, the MD

estimate of the location parameter is obtained from the sample data. The Kolmogorov-

Smirnov, Cramer-von Mises, and Anderson-Darling distances are all minimized, but the

location parameter estimate using the minimum Anderson-Darling distance has been found

to be the best estimate and is the one used here. The computational form of the Anderson-

Darling statistic is:

in

An = -n - E(2j - l)[InF(xj) + In(i - F.-.+,)]

After the MD estimate of the location parameter is found, the ML algorithm is used

to re-compute the shape and scale estimators, using the new value of the location parameter

t \to begin iterations. Estimates of the shape, scale, and location parameters found in this

way are superior to those found initially by the ML method.

16



3.3 Calculation of the Chi-Squared Goodness-of-Fit Statistic

Once the parameter estimates are obtained for each random sample, the gamma cu-

mulative distribution function (cdf) can be fully specified, enabling computation of the

chi-squared goodness-of-fit statistic for that sample. This is accomplished using the IMSL

subroutine CHIGF. For simplicity we have chosen to make the chi-squared cells eqt*prob-

able with expected cell frequency equal to one, which is within the guidelines offered in

the literature. The IMSL function GAMDF generates the numerical value of the standard

gamma cdf when supplied with a gamma deviate and the shape parameter. Conversion of

the 3-parameter, non-standard deviates back to the standard deviates is thus required in

order to invoke this function. This does not affect the value of the goodness-of-fit statistic,

however, due to the invariance property of the scale and location parameter estimates and

the invariance of the chi-squared statistic to location and ecale changes.

3.4 Identification of Critical Values

The 5300 values of the chi-squared goodness-of-fit statistic are placed in numerical

order (least to greatest) and the critical values are obtained from this array simply by

picking out the appropriate ordered entry. For example, the 80th percentile critical value

is the 4000th entry of the ordered array.

3.5 Power Study

For the power study, the steps of random deviate generation, parameter estimation

and calculation of the chi-squared goodness-of-fit statistics are executed in identical feshion,

with the exception that different IMSL routines are used to generate the random deviates,

since it is desired to draw from alternative distributions.

The final step in the power study is determining the rejection number, which indicates

the power of the test to detect the fact that the sample data did not come from the

hypothesized gamma distribution. This is done by conducting an actual test. The test

statistic obtained from the alternative distribution is compared to the appropriate (in

17



terms of sample size and shape parameter) critical value generated in the first part of

the thesis. If this chi-squared goodness-of-fit statistic exceeds the critical value, the null

hypothesis is rejected and the lack of fit between the alternative distribution sample and

the hypothesized gamma distribution has been successfully detected. If the test statistic is

less than or equal to the corresponding critical value, the lack of fit has not been detected

by this test. The fraction of the 5000 trials in which the lack of fit is in fact detected is

the power of the test for that alternative distribution.

Steps involved in the ge,,eration of critical values and the power study are depicted

in flow chart form in Figures 4 and 5.

1
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IV. Results

4.1 Critical Values

Critical values for the chi-squared goodness-of-fit test for the three-parameter gamma

distribution, with all parameters estimated, are shown in Tables 1-4. The critical values

were obtained for sample sizes 5,10,15,20,25,30,40 and 50 and shape parameters 1, 1.5, 2

and 2.5.

The first observation to note is that the critical values increase with sample size.

This result is to be expected, since the use of equiprobable cells with expected frequency

one means that the number of cells equals the sample size. Thus with increasing sample

size we increase the number of cells, generating more terms to be summed to arrive at the

chi-squared statistic. This observation also agrees with the classical rule that the statistic

approximates the chi-squared distribution, with degrees of freedom increasing with the

number of cells.

According to theory, the critical values obtained should have fallen between X
2 (k -1)

7 and X
2 (k - p-i1). As shown in Table 5, the mean critical value (over all shapes) does in

/7 fact fall in this window in all nine cases checked for the smaller sample sizes (5, 10, 15),

but in six of the nine cases it lies closer to the higher end, X
2 (k - 1). This does not agree

with the expectation that, because distance estimation was used on one parameter, the

critical value would lie closer to X2 (k - p - 1) (9). The departure from theory is even more

pronounced, however, in the cas3 of the larger three sample sizes (20, 25, 30, 40, and 50).

Here the critical values fall outside the window (at the high end) without exception, the

amount outside the window increasing with sample size.

It is apparent from these observations that whatever is driving the critical values

higher is a function of sample size, being markedly more noticeable with the larger samples.

Since the sample size equals the number of cells, one might speculate that the number of

cells is actually the driving factor. This in turn leads to the speculation that the small cell

counts (expected value one) are the underlying cause, since this choice seems to test the

limits of the cell-selection guidelines.
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The case of sample size 5 merits further discussion. An anomolous result is seen

here in that the critical values tend to be identical for the various significance levels. This

phenomenon is a product of the small sample size and the low expected cell frequency of

one; the two factors combine to generate a very small number of possible values of the

chi-squared statistic. For this reason it is recommended that this test not be employed

with sample sizes less than 10.

There is no significant difference in critical values attributable to varying the shape

parameter in the range (l.0-2.5).

Table 1. Critical Values for Shape=1.0

[I ______ Level of Significance ____

n~ .20 .15 J.10 1 .05 1 .01
5 4.000 6.000 6.000 6.000 6.000
10 10.000 12.000 12.001 14.000 20.000
15 17.999 18.000 20.000 22.000 28.000
20 24.000 26.000 27.998 30.000 36.000
25 31.999 33.999 35.999 38.001 46.000
30 38.000 40.000 42.000 45.998 52.001
40 51.998 53.997 55.999 59.999 68.004
50 64.003 66.010 69.999 74.001 86.002

Table 2. Critical Values for Shape=1.5

20 Level of Significance .0
n 1 .20 1 .15 1J .10 1 .05 1 ] .011__

5 4.000 6.000 6.000 6.000 6.000
10 12.000 12.000 14.000 14.001 18.001
15 18.000 20.000 20.000 24.000 28.001
20 24.001 26.000 28.000 30.000 36.000
25 131.999 133.999 35.999 38.001 46.000
30 38.000 40.000 42.000 45.998 53.998
40 51.9991 53.999 56.000 60.001 68.003
50~ 64.004 66.012 7.0 4018.9
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Table 3. Critical Values for Shape=2.0

F 1 .20 Level of Significance _

._1_20 .15 .10 1 °5 .05 l
5 4.000 6.000 6.000 6.000 8.000
10 12.000 12.000 14.000 14.001 19.999
15 18.000 20.000 20.000 22.001 28.000
20 24.001 26.000 28.000 30.000 38.000
25 31.999 32.001 34.001 38.000 45.998
30 38.000 40.000 42.000 46.000 54.000
40 51.996 53.994 56.000 bO.001 68.002
"50 64.001 66.004 69.998 74.003 83.999

Table 4. Critical Values for Shape=2.5

!LI .20 Level of Significance _

n .20 1 .1=5 .10 1 .05 1 .01

S4.000 6.000 6.000 6.000 8.000
10 12.000 12.002 14.000 16.000 20.000
15 18.000 20.000 22.000 24.000 30.000
20 26.000 26.001 28.000 32.000 38.000

25 32.001 34.000 36.000 39.999 46.000
30 40.000 41.998 43.999 47.998 56.000
40 52.002 54.004 58.000 62.000 71.993
50 66.000 68.001 71.996 76.001 86.003
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4.2 Power Study

Tables 6-9 show the results of the power study for ten alternative distributions, with

two null hypotheses (gamma shape 1.5 and gamma shape 2.5) and two significance levels

(.01 and .05) each.

The results of the power study fall into three groups. First is that for the gamma as

the alternate distribution, which was merely a check on the critical value results obtained

earlier, In the two cases where the null hypothesis was true, the power or percentage

of rejections of the null hypothesis is very close to the significance level of the tests, as

expected. In the cases where the null hypothesis was true exce~pt for the value of the shape

parameter, the power values are still quite close to Lne significance levels, confirming our

suspicion that the critical values are insensitive to the shape parameter values in this range.

The second group of results is that for the Weibull -- d ibeta as the alternate distribu-

tions. Here we see very low rejection percentages across both the columns and rows of the

table. This consistently low power value indicates that the test cannot distinguish between

* samples from the Weibull and beta distributions and gamma samples; this is tantamount

to saying that the gamma distribution can adequately model cases where the underlying

population is actually Weibull or beta, or that the gamma distribution is robust.

The third group of power study results is that for the normal, lognormal, and uniform

alternate distributions, In these cases the power is quite low for small sample sizes but

improves appreciably as sample size increases. This is equivalent to the statement that

the gamma distribution does not adequately model cases where the underlying population

is actually normal, lognormal, or uniform, and it is imperative that a goodness-of-fit test

leads to a rejection of the null hypothesis in these situations. The chi-squared test will lead

to a rejection in a fair percentage of cases, especially with the larger sample sizes and the

lognormal distribution. When the chi-squared test fails to reject, of course, more powerful

tests (when available) should always be used for confirmation.

In the case of the normal, lognormal, and uniform distributions, the power shows

consistent increases with increasing sample size, agreeing with the conventional wisdom

that the chi-squared test works best for larger sample sizes. Common sense suggests that
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Table 5. Comparison of Mean Critical Values to X2 Distribution

a n= X'(1) X( 2) X2(3) x 2(4)

.10 6.000 2.706 4.605 6.251 7.779

.05 6.000 3.841 5.991 7.815 9.488
.01 7.000j6.635 9.210 11.345 13.277
C n=10 X(6) X (7) X1(8) X2(9)

.10 13.500 10.645 12.017 13.362 14.684

.05 14.500 12.592 14.067 15.507 16.919

.01 19.500 16.812 18.475 20.090 21.666

Sa n=15 X2(11) X2 (12) X2(13) X2(14)
.10 21.500 17.275 18.549 19.812 21.064

1.05 23.000 19.675 21.026 22.362 23.685
.01 28.500 24.725 26.217 27.688 29.141
a n=20 * * * 2X(19)

.10 28.000 * * * 27.204
.05 30.500 * * * 30.144

g.01 37.000 * * * 36.191
SII n=25 X2 * j * f * [X2(24)11

.10 35.500 * * I * 33.196
.05 38.500 * * * 36.415
.01 46.000 * * * 42.980
a n=30 * * * X2(29)

.10 42.500 * * * 39.088
.05 46.500 * * * 42.577
.01 54.000 * * * 49.588
a n=40 * * *1

.10 56.500 * * 51.805
.05 60.500 * * * 55.759
.01 69.000 * * * 63.691

a n=50 * * * x(50)
if .10 70.500 * * * 63.167

.05 74.500 * * * 67.505
S.01 85.000 * * * 76.154
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any statistical procedure will be more accurate with larger sample sizes, but this result

appears even more pronounced with the chi-squared test. Part of the reason for this may

be that since the critical valu'es are greater with larger samples, there is more of a range of

possible values and a reduced likelihood of the statistic being exactly equal to the critical

value (a case where the null hypothesis is not rejected).

Table 6. Power Study for H0 Gamma, a = .05, Using Critical Values For Shape=1.5

011 _ _ _Alternate Distribution
S •l Gamma Gamma Weibull Weibull Weibull Weibull
f"n (1.5,1,10) (2.5,1,10) (1.5,1,0) (2.5,1,0) (1.5,1,10) (2.5,1,10)1

. 10 .048 .054 .049 .061 .064 .060
20 .054 .069 .060 .058 .075 .085
30 .049 .072 .060 .064 .064 .089
"40 .049 .066 .055 .067 .052 *

50 .050 .065 .070 .082 .055 *

-D Normal Lognormal Uniform Beta
lln (10,1) (0,1) (10,15) (1,2)

10 .088 .205 .087 .044
20 .160 .360 .141 .062
30 .234 .485 .188 .069
40 .275 .571 .209 .092
50 .346 .662 .265 .123

I2
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Table 7. Power Study for HO: Gamma, c = .01, Using Critical Values For Shape=1.5

Z _ _ _Alternate Distribution
Gamma Gamma Weibull Weibull Weibull Weibull

n (1.5,1,10) (2.5,1,10) (1.5,1,0) (2.5,1,0) (1.5,1,10) (2.5,1,10)
10 .010 .014 .014 .015 .017 .014
20 .011 .018 .016 .017 .018 .020
30 .010 .015 .016 .015 .014 .019
40 .010- .014 .019 .019 .013
50 .010 .016 .021 .023 .014 *

"Normal Lognormal Uniform Beta

n (10, 1 (0,1) (10,15) 1 (1,2)

10 .037 .097 .030 .011
20 .058 .189 .048 .014
30 .097 .270 .066 .019
40 .134 .363 .083 .026

___50 .185 .450 .113 .043

Table 8. Power Study for H0 : Gamma, a - .05, Using Critical Values For Shape=2.5

n__Alternate Distribution
Gamma Gamma Weibull Weibull f Weibull Weibull

n (1.5,1,10) (2.5,1,10) (1.5,1,9) (2.5,1,0) (1.5,1,10) (2.5,1,10)
10 .028 .034 .029 .038 .037 .038
20 .032 .040 .038 .038 .045 .055
30 .035 .049 .043 .047 .044 .061
40 .036 .049 .045 .054 .040 *

50 .039 .050 .054 .064 .040 *

S Normal Lognormal I.niform Beta

,,, (10,1) (0,1) (10,15) (1,2)
10 .065 .154 .058 .025
20 .115 .292 .096 .040
30 .186 .422 .149 .051
40 .242 .523 .180 .071
50 .307 .619 .225 .097
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Table 9. Power Study for H0 : Gamma, a = .01, Using Critical Values For Shape=2.5

", _ _ Alternate Distribution
"" Gamma I Gamma I Weibull Weibull Weibull Weibull

D.ln (1.5,1,10) (2.5,1,10) (1.5,1,0) (2.5,1,0) (1.5,1,10) (2.5,1,10)
10 .004 .006 .010 .007 .011 .007
20 .006 ,011 .010 .010 .010 .013
30 .005 .010 .009 .011 .008 .010
40 .007 .010 .015 .012 .010 *

50 .006 .010 .014 .016 .009 *

Normal fLognormal Un-iform Beta
n!n (10,1) (0,1) (10,15) (1,2)

S10 .025 .070 .021 .007
20 .040 .151 .031 .008
30 .067 .220 .046 .012
40 .113 .305 .061 .017

-o50- .144 .393 .083 .030

2
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V. Conclusions and Recommendations

5.1 Conclusions

The results of this investigation can be summarized as follows:

1. Critical values for a chi-squared goodness-of-fit test for the three-parameter gamma

distribution (all parameters estimated) were generated by a Monte-Carlo simulation

procedure and tabulated. Sample sizes should be at least 10 to use these values.

2. The gamma distribution can adequately model samples that are actually from a

Weibull or beta distribution.

3. Increasingly as the sample size increases, the critical values deviate from the ex-

pectation that their distributioa will be approximated by the classical chi-squared

distribution with degress of freedom b',tv'xen k - p - 1 and k - 1.

4. The use of a small expected cell frequency (equal to one) may have contributed to

conclusion 3 and may have lessened the power of the tests.

5. Varying the shape parameter of the gamma distribution in the range (1.0-2.5)

caused no sigpificant differences in the critical values obtained.

6. Larger sample sizes resulted in appreciably more powerful tasts in the cases where

rejection of the null hypothesis was in order.

5.2 Recommendations

The foliowirg stepi are suggested to further this research:

1. Investigate the ,,'fect of changing the cell-assignment rule for computing the chi-

squared statistic. One or more of the formulas in Chapter 2 for determining the

number of cells should be used, along with simply increasing the expected cell fre-

quencies to values such as 1.5 and 2.

2. Modify the parameter-estimation routines to improve the speed and consistency of

convergence.
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Appendix A. FORTRAN Code to Generate Chi-Squared Statistics

PROGRAM CHI-SQUARED
C ESTIMATES THE THREE PARAMETERS OF THE. GAMMA DISTRIBUTION USING
C MAXIMUM LIKELIHOOD AND MINIMUM DISTANCE METHODS
C THEN CALCULATES CHI-SQUARED STATISTIC~S

COMMON/VALUE/P (100)
COYm.XO/RAY/T (100)
COMMON/MIN/IN
COMMON/MINI/XNCDF(50) ,DIFKS,I ,IKS,IKS1
COMMON/MIN2/DIFCVM, ICVM, ICVI
COXMON/MIN3/DIFAD, lAD, IADI
COMMON/MANA/NSS1 ,S52,SS3,M,C1 ,T1,AI ,MR
COMMUN/SHAPE/ASJ

DOUBLE PRECISION DSEED,T,C1,T1,A1,CSJ,ASJ,TSJ
DOUBLE PRECISION CKS,CCVM,CAD
DIMENSION FX(60) ,AA(5000) ,XX(5002) ,YY(S002)
INTEGER REP,PP

DSEEDu 1500.000
MRUO

IONE-0
NZERO=O
REP=102
NOS.REP-2
NUM=REP-2

yy(1)U0.
YY(REP)=1.
DO 405 L=2,RE-P-1

YY(L)-((L-1)- .5)/NOS
405 CONTINUE

CALL RNSET(DSEED)
DO 100 PPw4C~j0,A0

C PRINT*,"PP".PP
'app

NUN
INUI

DO 99 KK=1,5000

SS1.1
SS2=I

SS3=1
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888 KKXUKKK~l
Clubo
Al-I
Tiai
CALL RNGAM(NAIP)

INN DO 719 IK-i.N
P (IK) -T1"P( IK) 4C

C IF (KK.LT.lOO) THEN
C PRINT*,"P".KX,P(IK)
C EJIDI?
719 CONTINUE

C CALL VSRTA(P,I)
CALL SVRGN(N.P.P)
DO 3 11-i.N

T (II)uP (II)

3 CONTINUE

CALL GAMMACIM(CSJ .TSJ .ASJ)

C IF (KK.LT.5) THEN
C PRINT. "C T A".KX," SEED 11,DSEED,CS.1,TSI.AS3
C ENDIF

IF ((ASJ .GT. 50) .OR. (ASJ .LT. .05)) GO TO 888
CALL MINDIS(ASJ,CSJ,TSJ,CKSCCVNCAD)
IF ((ASJ .GT. 50) .OR. (ASJ .LT. .06)) GO TO 880

c IF (XX.LT.S) THEN
C PRINT. ,"nmn"s,Cxs .CCVN,CAD
C ENDIF

CluCAD
S53-0
IF ((ASJ .GT. 50) .ORN. (ASJ .LT. .05)) GO TO 888
CALL GAMMACIMCCSJ ITSJ? ASJ)
IF (XK.LT.6001) THEN

C PRINT*."C T A son",XX,KKKXCSJ,TS3,ASJ
ENDIF
IF ((ASJ .GT. 50) .OR. (AS? .LT. .05)) GO TO 888

CALL GOF(CSJ.T53,ASJ.GOFS)
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IF ((ASJ .GT. 50) .OR. (ASJ .LT. .05)) GO TO 888
AA (KK) uGOFS

99 CONTINUE
C PRINT *, AA

OPEN(UNIT.7,FILE-'401E' .STATUSu'NEW' ,IOSTAT=MlERRm999)
WRITE(7,*)AA
CLOSE(UNIT.7 ,IOSTATun2 ,ERR=999 ,STATUSu'KEEP')

100 CONTINUE
999 END

SUBROUTINE GANMACIN(CSJ ,TSJ,ASJ)
COMNON/RAY/T( 100)
COMMON/MANA/N,SS1 ,SS2,SS3,M,CI ,T1,A1 ,MR

DOUBLE PRECISION T,C,THETA,ALPHA,DLT,DLC,CE,TH,EN,EM,ELNM,DLA,AL

DOUBLE PRECISION EMRIEI ,D2T,DT,D2A.CA,D2C,DC,ENS,GAM,GMAGAMIGMAI
DOUBLE PRECISION GMA12,DEXP,DABS.DLOG,SLSR,SI
DOUBLE PRECISION EL,CSJ,TSJ,ASJ,C1,TI.Ai.

DIMENSION C(1100) ,THETA(1100) ,ALPHA(1100)
DIMENSION DLT(50) ,DLC(S0) ,CE(50) ,TH(S0) ,DLA(S0) ,AL(50)
JI=20
JHu20
C(1)mCI
THETA(1)mT1
ALPHA(1)Al

9 ENUN
ENMu

88 ELNMwO.DO
ENRuMR
KRmNR+1

87 IINOXN-+l
DO 88 IuNM.N
EIuI

88 ELNX=ELNM.DLOG (El)
IF(MR) 66.89,109

109 DO 110 I1l,MR,
E1.1

110 ELNMuELNN-DLOG(EI)

89 DO 63 Ju.11100
IF (1-1) 66,112,111

ill J~UJ-1

IF (J-JI) 6,139.139

33



139 IF (J/JH-JJ/JH) 6,6,117
117 32-J-2

* J33J-3
IF(SS1) 119,119,118

118 D2T.THETA(JJ)-2.DO*THETA(J2)+THETA(J3)
DT*THETA(JJ)-THETA(J2)
IF(D2T) 135,119.135

135 NTwDABS(DT/D2T)
* GO TO 120

119 N~m999999
120 IF(SS2) 122,122,121
121 D2A=ALPHA(JJ)-2.DO*ALPHA(J2)+ALPHA(J3)

DA-ALPHA(JJ) -ALPHA(J2)
IF(D2A) 136,122,136

136 NAmDABS(DA/D2A)
GO TO 123

122 NAu999999

I)123 IF(SS3) 125,125,124

*124 D2C-C(JJ)-2.DO*C(J2)+C(J3)
DCnC(JJ)-C(J2)

"d ~IF (C(J3).0.00005-T(1))140,125,125
vi,,140 IF (C(JJ)-0.00005)125,12S.141

141 IF (D2C)137,125,137
137 NCmDABS (DC/D2C)

GO TO 126
125 NCU999999

126 IF ((NT.LT.NC).AND.(NT.LT.NA)) THEN

,' ELSEIF (NC.LT.NA) THEN
INl-NC

ELSE
NIN=NA

J, ENDIF
NSn2*MIN

IF(NS)6,6,142
142 IF(NS-999999) 138,6,6
138 ENS-NS

THETA(J).THETA(JJ)4(DT+.2SDO*(ENS+1.DO)*D2T)*ENS
IF (THETA(J).GT.i.D-4) THEN

THETAM()-THETA (3
ELSE

THETA(J)u1 .D-4
ENDIF
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IF ((ALPHA(JJ) .GT. 50) .OR. (ALPHA(JJ) .LT. .05)) GO TO 66

130 ALPHA(3)=ALPHA(JJ)
IF (SS3) 133,133,134

133 C(J)-C(JJ)
GO TO 112

134 C(J).C(JJ)+(DC..25D0*(ENS+i .DO)*D2C)*ENS

IF (C(J).GT.O.D-4) THEN
C(J)-C(J)

ELSE

C(J)=0.D-4
ENDIF

IF (C(J).LT.T(l)) THEN
C(J)-C(J)

ELSE
C(J)-T(1)

33DIF

IF ((1.DO-EMR)*C(J)-T(1))112,6,6

-'6 THETA(J)=THETA(JJ)
IF (SS1)13,13,7

7 Slw0.D0
DO 8 IuMUP,M

8 SiwS1+T(I)-C(JJ)
IF (N-N+?M)66 .73,74

73 THETA(J)OSI/(EM*ALPHA(JJ))
GO TO 13

74 GHA=GAM(ALPHA(JJ))
KSuO

DO 108 K1l,S000
KKK-1-

GNAI'.GANI((T(M)-C(JJ))/THiL-TA(J) ,ALPHA(JJ))

GMAI2=GAXI((T(MRP)-C(JJ))/THETA(J) ,ALPHA(JJ))

DLT(K).-EM*ALPHA(JJ) /THETA(J),Sl/THETA(J)**2+

1 (EN-E14)*(T(M)-C(JJ))**ALPHA(jj)*DEXP((C(JJ)
1 -T(M))/THETA(J))/(THETA(J)**(ALPHA(jj)+1 .DO)*(GMA-GNAI)) *EMR*ALPHA(3J)

2 /THETA(J)-EMR*(T(MRP)-C(JJ))**ALPHA(JJ)*DEXP((C(JJ)-T(NRP))
3 /THETACJ))/(THETA(J)**(ALPHA(JJ).1.DO)*GHAI2)

TH(XO-THETA(J)
IF (DLT(K))1O1,13,102

101 KS-KS-i
IF (KS'K) 105,103,105

102 KSKtS,1
IF (KS-10105.104,105

103 THETA(J)=.SD0*TH(X)
GO TO 108
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104 THETA(J)l.S.D0*TH(X)
GO TO 108

105 IF (DLT(K)*DLT(KK))107,13,106
108 KKUKK-1

GO TO 105
107 THETA(J)mTH(K)4DLT(K)*(TH(K)-TH(KK))/(DLT(KK)-DLT(K))

.IF (DABS(THETA(J)-TH(K))-1.D-4)13,13,108

108 CONTINUE
13 ALPHA(J)-ALPHA(JJ)
14 IF (SS2) 44,44,15

15 SL-0.DO
DO 16 IwNRP,K

16 SLoSL.DLOG(T(I)-C(JJ))
KSUO
DO 43 Kw1.5O
KKuK-1
GMA=GAM(ALPHA(J))
IF (N-M.NR) 66,30,21

21 GHAI-GANI((T(M)-C(JJ))/THETA(J) ,ALPHA(J))
GMA12=GAMI((T(KRP)-C(JJ))/THETA(J) ,ALPHA(J))

30 DGuDGAM(ALPHA(J))
76 IF (N-M.MR)66,77,32

- ~-77 DLA(K)--EM*DLOG(THETA(J) )4SL-EN*DG/GMA

GO TO 78
32 DGIoDGAMI((T(M)-C(JJ))/THETA(J) ,ALPHA(J))

DG12&DGAMI((T(MRP)-C(JJ))/THETA(l) ,ALPHA(J))
38 DLA(K).-EM*DLOG(THETA(J))+SL-EN*DG/GNA+(EN-EM)*(DG-DGI)/
1 (GMA-GMAI).EMR*DLOG(THETA(J) )+EMR*DGI2/GMAI2

78 AL(K)=ALPHA(J)
IF (DLA(K) 39,44,40

39. KS' KS-i
IF (KS.K) 70.41,70

40 KSwKS.1
IF (Ks-K) 70,42,70

41 ALPHA(3)..SDO*AL(K)
GO TO 43

42 ALPHA(3)ul.5D0*AL(K)
GO TO 43

70 IF (DLA(K)*DLA(KK)) 72,44,71
71 XK=KK-1

GO TO 70
72 ALPHA(J)uAL(K)eDLA(K)*(AL(K)-AL(KK))/(DLA(KK)-DLA(K))

IF (DABS(ALPHA(J)-AL(K))-1.D-4) 44,44,43
43 CONTINUE
44 C(J)SC(JJ)
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85 IF (SS3)112,112,45
45 IF (1.DO-ALPHA(J))79,143,143
143 IF (SSl+SS2)57,57,79
79 IF (I-M)66,83,46
46 GMAuGAM(ALPHA(J))
83 KSu0

DO 56 KEISO0
IUKmK-l

SRm0.D0
DO 69 IuMRP,H

69 SR-SR+1.Do/(T(I)-C(J))

IF (N-M+MR)66,80.81
80 DLC(K)=(1.DO-ALPHA(J))*SR+EM/THETA(J)

GO TO82
81 GNAI.GAMI((TOO)-C(J))/THETA(J) ,ALPHA(J))

GKA12nGAMI((T(MRP)-C(J))/THETA(J).ALPHA(J))
DLCCK)u(1.DO-ALPHA(J))*SR+(EM-EMR)/THETA(J).

1 (EN-EM)*(T(M)-C(J))**(ALPHA(J)-1.DO)*
4 DEXP(-(T(M)-C(J))/THETA(J))/(THETA(J)**ALPHA(J)*
2 (GMA-GMAI))-EMR*(T(MRP)-C(J))**(ALPHA(J)-1.DO)
3 *DEXP(-(T(MRP)-C(J))/TH ETA(J))/(THETA(J)**ALPHA(J)*GMA12)

82 CE~KmCMJ
51 IF (DLC(K))90,1i2,91
90 KS=KS-1

IF (KS.K)54,52,64
91 KSmKS+1

IF (KS-K)54,53,64
52 C(J)u.SDO*CE(K)

GO TO 68
53 C(J)=CE(K)+.BDO*CT(l)-CE(K))

GO TO 68
54 IF (DLC(K)*DLC(KK))67,112,55
55 KK=KK-1

GO TO 54
67 C(J).CECK).DLC(K)*(CECK)-CE(KK))/(DLC(KK)-DLC(K))
68 IF (DABS(C(J)-CE(K))-1.D-4)112,112,se
56 CONTINUE

GO TO 112
57 C(J)sT(i)
112 IF (NR)66,113,58
113 DO 115 Imi,N

IF (C(J)41.D-4-T(I))116,114,114
114 NRnMR.1
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115 C(l)-T(l)

116 IF (MR)6e.58,86
58 S1UO.DO

SLwO.DO
DO 92 I=MRP,M
Si-SI+T(I)-C(J)

92 SL-SL+DLOG(T(I)-C(l))
GMA-GAM(ALPHAW())
IF(N-M+MR)66 ,98.96

96 GMAImGAMI((T(M)-C(J))/THETA(J) ,ALPHA(J))
GMA12wGAMI((T(MRP)-C(J))/THETA(J) .ALPHA(J))

98 ELsELNM-EMi'DLOG(GMA)-EM*ALPHA(J)*DLOG(THETA(J) ).(ALPHA(J)-1 .DO)*SL
1-SI/THETA (3)

IF (N-M+MR)66. 100,99
99 ELUEL. (EN-EM) *(DLOG(GMA-GMAI) -DLOG(GMA))

1.EMR*ALPHA(J) *DLOG(THETA(J)).EMR*DLOG(GMAI2)
100 TSJ=THETA(J)

ASJuALPHA (3)

CSJuC(J)

IF (J-2)63,60.60
60 IF(DABS(C(J)-C(JJ))-i.D-4)61,61.63
61 IF(DABSCTHETA(J)-THETA(33))-1.D-4)62,62,63
62 IF(DABS(ALPHA(J)-ALPHA(33))-1.D-4)4,4,63
63 CONTINUE
4 CONTINUE

66 RETURN
END

DOUBLE PRECISION FUNCTION GANCY
* DOUBLE PRECISION G,Z,DLOG,DEXP.Y

zuT
GuO.DO

1 IF (Z-9.DO)22.23
*2 G-G-DLOG(Z)

zN+.zD.O
GO TO I

3 GAM*G.(Z- .SDO)*DLOG(Z)-Z4..5D0*DLOG(2.DO*3. 141592653589793D0)+i .DOI(12.DO*Z;
1 -1.DO/(360.DO*Z**3).1.DO/C1260.DO*Z**5)-1.DO/(168o.DO*Z**
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2 7).1 .DO/(1188.DO*Z**9)-69i.DO/(360360.DO*Z**1i)+1 .DO/(156.DO*Z**13
3 )

GAN-DEXP (GAM)
RETURN
END

C FUNCTION D<GAN
DOUBLE PRECISION FUNCTION DGAN(Y
DOUBLE PRECISION DGZ,Y,DLOG,GAM
ZNY
DG-O.DO

1 IF (Z-9.DO)2,2,3
2 DGuDG-l.DO/Z

Z*Z41.DO
GO TO I

3 DGAN.DG4(Z-.SDO)/Z+DLOG(Z)-i.DO-1.DO/(12.DO*Z**2)+I.DO/(120.DO*Z**
I 4)-i.DO/(262.*DO*Z**6).1.DO/(240.DO*Z**8)-i.DO/(132.DO*Z**1O)

2 +691.DO/(32760.DO*Z**12)-1.DO/(12.DO*Z**14)
DGAX=DGAM*GAM (Y)
RETURN
END

C FUNCTION DGAMI
DOUBLE PRECISION FUNCTION DGAMI(W,Z)
DOUBLE PRECISION UV,W,ZSUELL
DIMENSION U(SO) ,V(50)
U( I) W**Z*DLOG (W)/Z
V(1)uU**Z/Z**2
SU.U(i)-VC1)
DO I Lm2,5O
LL-L-1
ELLwLL
U(L)u(-U(LL)*W/E.LL)*(Z+ELL-1 .DO)/CZ.ELL)
V(L).-V(LL)*W*(ZELL-i .DO)**2/((Z.ELL)**2*ELL)

1 SUsSU+U(L)-V(L)
DGANI-SU
RETURN
END

C FUNCTION GAMI
DOUBLE PRECISION FUNCTION GAMICWZ)
DOUBLE PRECISION U,W,ZSU,ELL
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DIMENSION U(So)
U(1)nW**Z/Z
SUuU( 1)
DO 1 L=2,50
LL=L-l
ELL=LL

I' U(L).(-U(LL)/ELL)*W*(Z+ELL-1.Do)/(Z.ELL)
I SUmSU.U(L)

GAMIuSU

RETURN
J, END

SUBROUTINE MINDIS(ASJ,CSJ,TSJ,CKSCCVM,CAD)
DOUBLE PRECISION ASJ,CSJ,TSJ,AHATJTHAT,CHAT,CKS,CCVN,CAD,X2
INTEGER ICKEIKSIICVI,IADI

COMISON/MIN/IN
COMMON/MINI/XNCDF(E0) ,DIFKS .1,IKSIKSI
COMMON/MIN2/DIFCVM, ICVM, IC~l
COMMON/MIN3/DIFAD,IAD, IADI
COMMON/VALUE/P (100)

AHATuASJ
CHATuCSJ
T1LATuTSJ
N-aIN
DO 10 Im1,V
XNCDF(I)=O.0

10 CONTINUE
C S COMPUTE MINIMUM DISTANCE ESTIMATES FOR LOCATION

DIFKS w 9999999.99
DIFCVM. 9999999.99
DIFAD m 9999999.99
IKS=O
ICYM m 0
IAD a 0
X2 w P(1)-.0001
CHAT a X2
IKSI a 0
ICV1 - 0
IAD1 w 0
DO 200 1 1,200
X2 a 2- .01

DO 180 Ln1.I
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ANORN.(P(L) -X2) /TSJ

IF ((ASJ .GT. 50) .OR. (ASJ .LT. .05)) GO TO 888

11-ASJ
5.NCDF CL) -GAMDF(ANORN ,X1)
IF(XNCDF(L).EQ.0.) THEN

X.NCDF(L)uXNCDF(L). .0001
IZERONXZERO+ 1

END IF
IF(XNCDF(L).EQ.1.) THEN
XNCDF (L)*XNCDF CL) -.0001
NONE=NONE41
END IF

160 CONTINUE
IF (IKSI .EQ. 1) GO TO 182
CALL WKS(I)

182 CONTINUE
IF (ICYI .EQ. 1) GO TO 183
CALL WCVM(N)

183 CONTINUE
IF (TADi .EQ. 1) GO TO 198
CALL WAD(N)

198 CONTINUE
ICKE a IKS14ICVI4IADI

IF (ICKE .EQ. 3) GO TO 201
200 CONTINUE
201 CONTINUE

CKS a CHAT - 0.01*CIKS-1)
CCVII a CHAT - 0.01*(ICVM-i)
CAD a CHAT - 0.01*(IAD-1)

888 RETURN
END

C *** WEIGHTED K-S**
SUBROUTINE WKS (N
CONNON/MIN1/XNCDF(50) ,DIFKS,I ,IKS,IKSI

TOP - 0.0
DOT a 0.0
II.a'
DOI10L1a ,N
RL -L

IF(RL/1N-XNCDF(L) .GT. T'IP) TOP m RL/IN -XNCDF(L)

IF'.INCDF(L)-(RL-1)/XN .GT. DOT) DOT *XNCDF(L) -(RL-1)/XN

10 CONTINUE
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DIF *TOP
IF(BOT .GT. DIF) DIF *BUT

IF(DIF .LT. DIFKS) GO TO 20
INSi a 1
RETURN

20 INSUI
DIFKS *DIF

RETURN
END

C **WEIGHTED C-V M *

SUBROUTINE WCVM(N)
CONMON/MNIN/XNCDF(S0) ,DIFKS,I ,IKSIKSI
COMMON/MIN2/DIFCVM,ICVM *ICVI.
XN a N
DFCVN a 0.0
DO 10 N. w ,N

DFCVN = DFCVM + (XNCDF(N) -(2.*XM 1.) /(2.*XN))**2
10 CONTINUE

DFCVN m DFCVN + 1./(12.*XN)
IF(DFCVN .LT. DIFCVM) GO TO 20
ICVI = I
RETURN

20 D!'FCVN a DFCVN
ICYN - I
RETURN
END

C **ANDERSON-DARLING *

SUBROUTINE WAD(N)
COMMON/MNIN/XNCDF(50) ?DIFRS,I ,IKSIKSI
COMNON/MIN3/DIFAD, lAD, IADI

DFAD a 0,0
DO 10 KX 1,N

JK a N 1 - X

IF(INCD,'(JK) .GE. 1.0) XNCDF(JK) *.999999999
DFAD vDFAD * (2.*sRN-1.)*(LOG(XNCDF(K)).LOG(1.-XNCDF(JK)))

10 CONTINUE
DFAD * BS(-DFADIN-N)
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IF(DFAD .LT. DIFAD) GO TO 20
IADI - I
RETURN

20 DIFAD a DFAD
IAD a I
RETURN
END

SUBROUTINE GOF(CSJ ,TSJ,ASJ .GOFS)
CONNON/RLAY/T(f 100)
COMNON/MANA/N,SSI ,SS2,SS3 ,M,C1 ,TI,AI ,NR

REAL GANCDF,CHISQ(101) ,COUNTS(100) ,CUTP(99) ,DF

REAL EXPECTOi00), FREQ(1) ,P,RNGE(2) ,W(100)
DOUBLE PRECISION CSJ,TSJ,ASJ,T,C1,T1,A1

EXTERNAL GAMCDF
DATA FREQ/-I.0/,RIJGE/0.0, 0.0/

DO 333 Ln.1N
W(L)-(T(L) -CSJ)/TSJ

333 CONTINUE

ID0OO
NCATw-N
IDFEST=3

IF ((ASJ .GT. S0) .OR. (ASJ .LT. .05)) GO TO 888

CALL CHIGFCIDO ,GAMCDFN,VFREQ,NCAT,RNGE,NDFESTCiITp,
k COUNTS,EXPECT,CHISQ,P,DF)

GOFSuCHISQ (N+1)

888 RETURN
END

REAL FUNCTION GAMCDF(X)
COMNON/SHAPE/ASJ
DOUBLE PRECISION ASJ
REAL I
GAMCDF=GANDF (X, ASJ)
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888 RETURN
END
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Appendix B. FORTRAN Code to Generate Criicl Values

DIMENSION AA(5000)

c PRINT *, 'ENTER THE FILE NAME'
c READ *,A$

PRINT *, 'FOR SAMPLE SIZE , SHAPE 2.5'
PRINT *

PRINT * 'THE CRITICAL VALUES ARE:'

OPEN(UNIT=7,FILE='5OIE',STATUS-'OLD',IOSTAT=MI,ELRR=999)
READ(7,*)AA
CLOSE(UNIT=7,IOSTAT=M2,ERR=999,STATUS='KEEP')

CALL SVRGN(5OOO,AAAA)

PRINT 1, AA(4000)
PRINT *
PRINT 2, AA(4250)
PRINT *

PRINT 3, AA(4500)
PRINT *

PRINT 4, AA(4750)
PRINT *
PRINT 5, AA(4950)

I FORMAT('ALPHA=.20: ',F6.3)
2 FORKAT('ALPHA=.15: ',F6.3)
3 FORMAT('ALPHA=.I0: ',F6.3)
4 FPRKAT('ALPHA=.05: ',F6.3)
9 FORMAT('ALPHA=.Oi: ',F6.3)

9994
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Appendix C. FORTRAN Code to Generate Rejection Percentages

DIMENSION AA(5000)

PRINT * *'THE FOLLOWIW4G ARE FOR Nu40'
PRINT s

CRIT51m60.001
CRITI 1-68.003
CRIT52.62 .000
CRIT12=71 .993

OPENCUNIT*7.FILE'IP4OCI' .STATUS-' '.IOSTAT-M1,ERR-999)
READ(7,e)AA
CLOSECUNITn7, IOSTAT-M2,ERR2999.STATUSa 'KEEP')

PRINT
PRINT *,'FOR ALTERNATE DISTRIBUTION:'

PRINT *

PRINT *,' GAMMA, SHAPE=1.6'

CALL POWER(AA ,CRIT5I ,CRITII ,CRIT52,CRIT12)

OPEI(UNIT-7,FILE 'P4ON' ,STATUS*I ',IOSTATuM1,ERRu999)

RE.AD(7,*)AA
CLOSE (UN IT. , IOSTAT-M2 ,ERR-999 .STATUS-' KEEP')

PRINT*
PRINT *$'FOR ALTERNATE DISTRIBUTION:'
PRINT
PRINT *'NORMAL'

CALL POWER(AA.CRITB1 ,CRIT11 ,CRITS2,CRIT12)

OPEN(UUIT-7,FILE. 'P40L' ,STATUS'I ',IOSTATaM1 .ERR-999)

READ(7,*)AA
CLOSE(UNIT7.,IOSTATsM2,ERR-999,STATUS 'XEEP')

PRINT*
PRINT *,'FOR ALTERNATE DISTRIBUTION:'
PRINT*
PRINT *'LOGNORNALF
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CALL POWER(AA.CRITS1 .CRIT11 .CRIT52 ,CRIT12)

PRINT *
PRINT *
PRINT s
PRINT S.'THE FOLLOWING ARE FOR N-SO'
PRINT

CRIT61=74.OO1
CRITI11.83.998
CRIT52w76 .001

CRIT 12.86.003

OPEN(UNITm7,FILE'IP5OGI' ,STATUS.' ',IOSTAT.MI,ERR,999)

READ(7.*)AA
CLOSE(UNIT=7,IOSTAT"M2 ,ERR=-999 ,STATUS IKEEP')

PRINT*
PRINT *,'FOR ALTERNATE DISTRIBUTION:'
PRINT *
PRINT *.' GAMMA. SHAPE-1.5'

CALL POWER(AA ,CRITS1 ,CRITI1 .CRIT52,CRIT12)

OPEN(UNITu7 ,FILE 'PSON' ,STATUS.' '.IOSTATwMi .ERRw99T)
READ (7 4') AA
CLOSE(UNIT-7, IOSTATuM2,ERR.999.STATUS.'KEEP')

PRINT *
PRINT *,'FOR ALTERNATE DISTRIBUTION:'
PRINT
PRINT .'NORMAL'

CALL POWER(AA,CRITS1 .CRIT1IICRITS2.CRIT12)

OPEN(UNIT.7.FILE='PSOL' ,STATUS-' '.IOSTATuMlERR.999)
READ(7.S)AA
CLOSE(UNIT-7,IOSTATsM2 ,EPRl.999,STATfUS. 'KEEP')

PRINT
PRINT *,'FOR ALTERNATE DISTRIBUTION:'
PRINT
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PRINT *,LOGNORMAL'

CALL POWER(AA ,CRITS1 ,CRITI1 ,CRITS2 ,CRIT12)

SUBROUTINE POWER(AA,CRIT51,CRIT~i ,CRITS2.CRITi2)

DIMENSION AACS000)

ICNT11-0
ICNT51=O
ICNT12=0
ICNT52=0

DO 100 I1,.000

IF (AA(I .GT. CRIT11) ICNT11-ICNT~i+1
IF (AA(I .GT. CRIT51) ICNTSI-ICNT51+1
IF (AA(I) .GT. CRIT12) ICNTi2-ICNT12+1
IF (AA(I .GT. CRIT52) ICNT52=ICNT52+1

£00 CONTINUE

PWRI 1uICNTI 1/5000.
PWRsi-ICNTsi/5000.
PWRI2wICNT12IS000.
PWR52=ICNT52/5000.

PRINT *

PRINT *

PRINT 200, PWRII
PRINT*
PRINT 201. PWR5I
PRINT
PRINT 202, PWRI2
PRINT *

PRINT 203. PWR52
PRINT *

PRINT *.ICNTii. ICNT5S., ICNT12, ICNT52
PRINT*
PRINT*

200 FORMAT(' POWER FOR ALPHAw.01, NULL HYPOTHESIS SHAPE 1.5 IS
& ',F5.3)
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201 FORMAT(' POWER FOR ALPHA=.05. NULL HYPOTHESIS SHAPE 1.5 IS

A ',F5.3)
202 FORMAT(' POWER FOR ALPHA-.O1, NULL HYPOTHESIS SHAPE 2.5 IS

& ',F5.3)
203 FORMAT(' POWER FOR ALPHA=.05, NULL HYPOTHESIS SHAPE 2.5 IS

& ',F5.3)

RETURN
END
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